Platform Jumper: Running,
Falling, Jumping

With thanks to Michael Kolling

Lange

We will be implementing a small segment of a platform
game. In this game, the player controls a character
that has to move from one area on the screen to

another, while overcoming obstacles such as a gap in
the ground

In this scenario, there are two pieces of ground on either
side of the screen, and the penguin can get across by
jumping onto a moving cloud. We will implement the
running, jJumping and falling behavior

Creating Movement

Let's Make Some Changes

] (e) (O] e A T |

Surveying

the Code

Class Edt Took Ophors

iaport greenfoet, v

e
T The class Mover provides some bazic movement methods. Use this as & superclass
¥ for other actors that should be able to move left amd right, jump ap and fall
* dosm,
o
public class Mower excends Aoror
[

privace scatic fimal int speed = 73

pablic woid moveRight(]
i

aetlocation | getXi) + speed, gee¥(h 1:
b Clwss Ede Todk Opbors

pablic woid wtvelefty)

[

seclocarion | gecdi) - spesd, gec¥Wih 1: public class Fenga excends Mowver
K |
e
T Check keyboard input and act accocdin
Clags compded - N0 FyTHAx SIS v

puablic wodd act()
checkEeysl) z
¥

private wold checkFeys()
' if [Gresnfoot. iaKeyDoun|~1efe”))
: serInags| “pangu-1e0t. pr
moveleftil:
::! [Feeenbost. ialeyDowmn|“cighe™) |
[

Wl E

stelnage | “penq-Elghe. pag")
movaRight (] ;
H

Souwrce Code

When Run

Falling or |

for falling or jumping:.

: called in the Pengu class

CE®

Is Clicked, there is only

left/ right movement without
umping ability

i (]
El=]
e source code ot t 1€ Mover class

-

his method would need to be

/ v

| 4

Class compded = N $yTRax STors

o]

Making Pengu fall

import greenfoot.*; // (World, Actor, Greenfootimage, and Greenfoot)

/**
* The class Mover provides some basic movement methods. Use this as a superclass
* for other actors that should be able to move left and right, jump up and fall

* down.
Open the Mover class and

*/
public class Mover extends Actor create a new variable
§ called vSpeed

private static final int speed = 7; / running speed (sideways)

private int vSpeed =5; /I vertical speed

public void moveRight()

{
setLocation (getX() , getY());

}

Making Pengu fall continued

public void moveLeft() In the Mover class,
{ | Create a new method, fall();
setLocation (getX(), getY());
) This will create movement
public void fall() downward as we change the y-
{ coordinate but leave the x-
setLocation (getX(), getY() + vSpeed); coodinate unchanged
}

Hit Compile button to save

Almost Ready To Go...

sz Edt Took Ophaore

| compite | [undo | [cut] [Cony | [Paste | [Fina..| [Close]

isport greenfoot,

-Illil
" & listle penguin that wants to get to the other side
"y

piEhlic clags Penga edcends MOUET
[

e
¥ Check keyboard input and &
L]

accocdingly

public wvodd &cei)
[
chieckKeys() 7
fallih:

¥

private woid checkFeyai)
[
if [FEEEREOOT. 1aFeyDeum|~1sEE"))
[
secInage | pengu-lef topng™] 2
mavelegny) ;

Souce Code

For testing purposes, open
the Pengu class
Add the method call fall();

Click Compile and Run

Notice that Pengu falls right
away and the fall looks
strange. This is because it is
falling at a constant rate
instead of accelerating as in
a natural fall

L

| 4

elareged

Watch Pengu fall!

] (e] (O st] . [cote]

Creating acceleration during fall

public class Mover extends Actor For a more realistic fall, we need
{ acceleration to simulate gravity (
vSpeed needs to increase during

private static final int speed = 7; /'Tunning speed (sideways) fall)

private int vSpeed = 0; /I current vertical speed
private static final int acceleratio ~ // down (gravity)

Open the Mover class
public void moveRight()

{
}

. Initialize the variable vSpeed to O
setLocation (getX() + speed, getY()); and create method setVSpeed
Create a new variable for
acceleration

public void moveLeft()

{

}
public void setVSpeed(int speed)

{

setLocation (getX() - speed, getY());
Add the following code to the fall()
method

vSpeed = speed,;
} Hit Compile button and run.

public void fall()

{
setLocation (getX(), getY() + vSpeed);

vSpeed = vSpeed + acceleration;

}

Preventing falling when on ground

public class Mover extends Actor

{

private static final int acceleration = 2;

private static final int speed = 7;

private int vSpeed = 0;

public void moveRight()

{
}

setLocation (getX() + speed, getY());

public void moveLeft()

{
}

setLocation (getX() - speed, getY());

public boolean onGround()

{

}

/I down (gravity)

// running speed (sideways)

/I current vertical speed

—

Pengu currently falls even if he is
standing on ground

We need to check if he’s on
ground, (check to see if there is an
object immediately under our
object of type Pengu) and only fall
if he’s not

We can do this using a boolean
method called onGround. A
boolean tests to see if a condition
holds true or not.

Open the Mover class, create the
method and implement it as
follows

Hit Compile to save

Object under = getOneObjectAtOffset(0, getimage().getHeight()/2-8 , null);

return under != null;

Preventing falling when on ground continued

3 Greenfool: pengu
Scenary Edt Cortrols Help

| Hit Compile RIEL B conmersinan |
» Greenfoot: Method Result E]@
Invoke onGround() e
=z |~ | byrightclicking.on [on
Pengu to see that =
what youdid works!
Actor
The boolean should S
. return true if Pengu =
void fall) is on ground
void movelen) i
s false otherwi i
void seNEpeed(int speed)
<
(e) [(Brn) [(Ore= oot y [P]

l % Actor (Greenfoot AP1)

Preventing falling when on ground continued

All Classes

| ACtOr
Ciadle

Greenfoot

| Greenfootimage

| GreenfootSound
Mauseinfo

[World

public boolean onGround()

{

Kenuns:

Lust of objects at the gven offtet. The bet wall mehde thus object, f'the offset 1s zero

getOneObjectAtOfset

provected Actor getOneObjectAtOffset (int dx,
int dy,

java, lang.Class cls)

Retum one obgect that 1 Jocated at the specdied cell (relatve to this objects location) Objects found ¢
aspecdic class (and ite subelasses) by supplymg the 'cls’ parameter. If more than one object of the sptaied class rendes
at that location, one of them wll be chosen and returned

Parameters:

dx « X-coordmate relative to this objects lacaton
dy - y-coordinate relatwe to this objects locabion
o1s - Class of objects to book for (passig ‘oull' will find ad objects)

Retuns:

An object at the given location, or null f noae found

fe restncted to

Greenfoot API:
Code Explained

getOneObjectAtOffset() is
a method inherited from
the Actor class used to
retrieve an object at a
given offset from our
location. In this case, our
X,y coodinates are 0O,
getimage().getHeight()/2-8
as this is the centerpoint
directly under our image

Method returns true if
there was an object of
any type, [this is what the
null meant] at the offset
point

Object under = getOneObjectAtOffset(0, getimage().getHeight()/2-8 , null);
return under != null;

Preventing falling when on ground continued

public class Pengu extends Mover

{ Now we need to create code that
o will result in our character falling
public void act() .
{ only if we are not on ground
checkKeys();
checkFall(); Open the Pengu class

}

private void checkKeys()

{

Delete the method fall() and
f (Greenfoot.isKeyDown('left?)) replace with a new method called
{ ' checkFall()

setimage("pengu-left.png");

moveLeft(); Implement the method checkfall in

} the body of the code

if (Greenfoot.isKeyDown("right"))

{
setimage("pengu-right.png");
moveRight();

}

If the character is on ground, this
stops the fall as vertical speed will

} be set to zero else the character

private void checkFall()

{ will fall
it (onGround()) { /

setVSpeed(0); Hit Compile and run to test!
}
else {

fall();

}
}
}

engu falls!

Greenfoot: pengu

Scenatio Edit Controls Help

Q__'J [% Scenatio Information J

‘World classes

i

Ackor classes

N

Q- i

[= act] [- Run] [) Reset J Speed: IL U

. , . [Compile J

; Start & mi . | [pengu

16

Getting Pengu to Jump!

public class Pengu extends Mover

r Now we need to create code
?Ub“c void act() that will let our character
checkKeys(); jump!
checkFall();
} First we need to add a key
private void checkKeys() that will control the jump
{
if (Greenfoot.isKkeyDown("left"))
{ Open the Pengu class and
setimage("pengu-left.png"); add this code
moveleft();

}

if (Greenfoot.isKkeyDown("right"))

{ o
setlmage("pengu-right.png"); Pengu will jump Whe_n yOL_I
moveRight(); press the space key if he is

}

if (Greenfoot.isKkeyDown("space")) on ground

{

iIf (onGround())
jump();

Getting Pengu to Jump Continued!

public class Pengu extends Mover

{

oublic void act) NOW we need to implem_ent

{ the jump method. Jumping
checkKeys(); . L . :
checkFall(); Is similar to falling but with

} upwards movement

private void checkKeys()

{

if (Greenfoot.iskeyDown("left")) So we start with a neg ative
{ -

setimage("pengu-leftpng’): vertical speed because the
\ moveLeft(); vertical speed will decrease
if (Greenfoot.iskeyDown("right")) until standstill
{

setlmage("pengu-right.png");
} moveRight(); Open the Pengu class and
if (Greenfoot.iskeyDown("space")) add this code
{

if (pnGround())) _
\ jumpo(); Hit Compile and run to test

} it out!

private void jump()
{
setVSpeed(-16);
fall();
}

Getting Pengu to Jump Continued!

public class Pengu extends Mover

t B s Now lets use a variable in
private static final int jumpStrength = 16;
public void act() the Pengu class for the
U heckkeyso: vertical speed when
\ checkFall(); jumping because this will
make it easier to find and
i id checkK
?rlvate void checkKeys() Change Iater!

if (Greenfoot.isKkeyDown("left"))

{ .
setimage("pengu-left.png"); Lets call it jumpStrength
moveleft();

}

i{f (Greenfoot.iskeyDown("right")) Don’t forget to a|so update
setimage("pengu-right.png"): the Jump method with the

ohto): _

, moverian: new variable name!

if (Greenfoot.isKkeyDown("space"))

{ i
f (onGround() Test out different

, el jumpStrengths by changing

b . the value.
private void jump()
{
S d(+ S h); .
s Peedaumpsirength) Compile and run!

}

Running, falling, jumping!

G (Brn) (O] wet 0 b o |

Creating a moving platform

] (rn) [(Ore=] wet 0 [e]

Moving Platforms!

import greenfoot.*; // (World, Actor, Greenfootimage, and Greenfoot)

/**

Open the Cloud class

* A cloud that moves back and forth between two defined

oints.
f, Before we get the cloud
public class Cloud extends Actor moving from point to point, we
{ need to make sure that when

private int speed = 4; Pengu jumps on the cloud, the

Cloud and Pengu move in the
same direction together.

/**

* Move in the direction we are currently mow
Turn if we reach a turning point.
*/

1E)ublic void act() —

setLocation (getX() + speed, getY());

Add this code to do this!

Actor actor = getOnelntersectingObject(null);
if(actor !'= null) {
actor.setLocation (actor.getX() + speed, actor.getY());

}

Moving Platforms!

Now we need the cloud to move back

public class Cloud extends Actor and forth

{

}

private int speed = 4; _
private int leftTurn = 270; To get the cloud to do this we need to

private int rightTurn = 480; tell the cloud to change directions when
it gets to a specific point

/**

* Move in the direction we are currently moving in. if we reach a turning point.
*/

public void act() To do this, first add the leftTurn and the
{ rightTurn variables. These variabes
setLocation (getX() + speed, getY()); specify the x coordinate at which the

cloud should change directions
Actor actor = getOnelntersectingObject(null);
if(actor = null) {
actor.setLocation (actor.getX() + speed, actor.getY());
}

if (atTurningPoint()) {
speed = -speed,;
}
}

/**
* Test if we are at one of the turning
*/
public boolean atTurningPoin

{ _ Compile and run!
return (getX() <= leftTurn || getX() >=rightTurn);

}

Now create a boolean method that
decides if we’re at a turning point. The
method will return true as soon as we
reach either the left turning point or the
right turning point

Now write the code that tells the cloud
to change directions if it is at a turning
point. Using the negative of speed
reverses the movement

Greenfool: pengu

[WM |

|
Workd dassey

(5] [(pan] (Oree et) Conpln]

24

{

}

Ending the game after a fall!

public boolean onGround()

Object under = getOneObjectAtOffset(0, getimage().getHeight()/2-8 , null);

return under != null;

public void setVSpeed(int speed)

{
}

vSpeed = speed;

public void fall()

{

}

private boolean atBottom()

{
}

setLocation (getX(), getY() + vSpeed);

vSpeed = vSpeed + acceleration;

if (atBottom())
gameEnd();

return getY() >= getWorld().getHei

private void gameEnd() _

{
}

Greenfoot.stop();

We want our game to be
over if our character falls
off and dies!

Open the Mover class

Create the method
atBottom. This will decide if
Pengu has fallen

Create the method
gameEnd. This stops
running Greenfoot

Call these methods in the
fall method

