
Platform Jumper: Running,

Falling, Jumping

With thanks to Michael Kolling

Pengu!

We will be implementing a small segment of a platform

game. In this game, the player controls a character

that has to move from one area on the screen to

another, while overcoming obstacles such as a gap in

the ground

Pengu!

In this scenario, there are two pieces of ground on either

side of the screen, and the penguin can get across by

jumping onto a moving cloud. We will implement the

running, jumping and falling behavior

Creating Movement

Click Run. Notice that Pengu

can move left/right but does

not fall when he leaves

ground

Let’s Make Some Changes

Right Click the Mover Class

Click On Open Editor. Repeat

for Pengu class

Surveying the Code

When Run is Clicked, there is only

left/ right movement without

Falling or jumping ability

This is because no method exists in

the source code of the Mover class

for falling or jumping.

This method would need to be

called in the Pengu class

Making Pengu fall

import greenfoot.*; // (World, Actor, GreenfootImage, and Greenfoot)

/**

* The class Mover provides some basic movement methods. Use this as a superclass

* for other actors that should be able to move left and right, jump up and fall

* down.

*/

public class Mover extends Actor

{

)

private static final int speed = 7; // running speed (sideways)

private int vSpeed = 5; // vertical speed

public void moveRight()

{

setLocation (getX() , getY());

}

Open the Mover class and

create a new variable

called vSpeed

Making Pengu fall continued
public void moveLeft()

{

setLocation (getX(), getY());

}

public void fall()

{

setLocation (getX(), getY() + vSpeed);

}

In the Mover class,

Create a new method, fall();

This will create movement

downward as we change the y-

coordinate but leave the x-

coodinate unchanged

Hit Compile button to save

Almost Ready To Go...

For testing purposes, open

the Pengu class

Add the method call fall();

Click Compile and Run

Notice that Pengu falls right

away and the fall looks

strange. This is because it is

falling at a constant rate

instead of accelerating as in

a natural fall

Watch Pengu fall!

Pengu falls off the cliff at a

constant rate!

But right now, he falls even if he’s

on ground

Creating acceleration during fall
public class Mover extends Actor

{

private static final int speed = 7; // running speed (sideways)

private int vSpeed = 0; // current vertical speed

private static final int acceleration = 2; // down (gravity)

public void moveRight()

{

setLocation (getX() + speed, getY());

}

public void moveLeft()

{

setLocation (getX() - speed, getY());

}

public void setVSpeed(int speed)

{

vSpeed = speed;

}

public void fall()

{

setLocation (getX(), getY() + vSpeed);

vSpeed = vSpeed + acceleration;

}

For a more realistic fall, we need

acceleration to simulate gravity (

vSpeed needs to increase during

the fall)

Open the Mover class

Initialize the variable vSpeed to 0

and create method setVSpeed

Create a new variable for

acceleration

Add the following code to the fall()

method

Hit Compile button and run.

Preventing falling when on ground
public class Mover extends Actor

{

private static final int acceleration = 2; // down (gravity)

private static final int speed = 7; // running speed (sideways)

private int vSpeed = 0; // current vertical speed

public void moveRight()

{

setLocation (getX() + speed, getY());

}

public void moveLeft()

{

setLocation (getX() - speed, getY());

}

public boolean onGround()

{

Object under = getOneObjectAtOffset(0, getImage().getHeight()/2-8 , null);

return under != null;

}

Pengu currently falls even if he is

standing on ground

We need to check if he’s on

ground, (check to see if there is an

object immediately under our

object of type Pengu) and only fall

if he’s not

We can do this using a boolean

method called onGround. A

boolean tests to see if a condition

holds true or not.

Open the Mover class, create the

method and implement it as

follows

Hit Compile to save

Preventing falling when on ground continued

Hit Compile

Invoke onGround()

by right clicking on

Pengu to see that

what you did works!

The boolean should

return true if Pengu

is on ground and

false otherwise

public boolean onGround()

{

Object under = getOneObjectAtOffset(0, getImage().getHeight()/2-8 , null);

return under != null;

}

Greenfoot API:
Code Explained

getOneObjectAtOffset() is

a method inherited from

the Actor class used to

retrieve an object at a

given offset from our

location. In this case, our

x, y coodinates are 0,

getImage().getHeight()/2-8

as this is the centerpoint

directly under our image

Method returns true if

there was an object of

any type, [this is what the

null meant] at the offset

point

Preventing falling when on ground continued

Preventing falling when on ground continued
public class Pengu extends Mover

{

public void act()

{

checkKeys();

checkFall();

}

private void checkKeys()

{

if (Greenfoot.isKeyDown("left"))

{

setImage("pengu-left.png");

moveLeft();

}

if (Greenfoot.isKeyDown("right"))

{

setImage("pengu-right.png");

moveRight();

}

}

private void checkFall()

{

if (onGround()) {

setVSpeed(0);

}

else {

fall();

}

}

}

Now we need to create code that

will result in our character falling

only if we are not on ground

Open the Pengu class

Delete the method fall() and

replace with a new method called

checkFall()

Implement the method checkfall in

the body of the code

If the character is on ground, this

stops the fall as vertical speed will

be set to zero else the character

will fall

Hit Compile and run to test!

Pengu falls!

16

Getting Pengu to Jump!
public class Pengu extends Mover

{

public void act()

{

checkKeys();

checkFall();

}

private void checkKeys()

{

if (Greenfoot.isKeyDown("left"))

{

setImage("pengu-left.png");

moveLeft();

}

if (Greenfoot.isKeyDown("right"))

{

setImage("pengu-right.png");

moveRight();

}

if (Greenfoot.isKeyDown("space"))

{

if (onGround())

jump();

}

}

Now we need to create code

that will let our character

jump!

First we need to add a key

that will control the jump

Open the Pengu class and

add this code

Pengu will jump when you

press the space key if he is

on ground

Getting Pengu to Jump Continued!
public class Pengu extends Mover

{

public void act()

{

checkKeys();

checkFall();

}

private void checkKeys()

{

if (Greenfoot.isKeyDown("left"))

{

setImage("pengu-left.png");

moveLeft();

}

if (Greenfoot.isKeyDown("right"))

{

setImage("pengu-right.png");

moveRight();

}

if (Greenfoot.isKeyDown("space"))

{

if (onGround())

jump();

}

}

private void jump()

{

setVSpeed(-16);

fall();

}

Now we need to implement

the jump method. Jumping

is similar to falling but with

upwards movement

So we start with a negative

vertical speed because the

vertical speed will decrease

until standstill

Open the Pengu class and

add this code

Hit Compile and run to test

it out!

Getting Pengu to Jump Continued!
public class Pengu extends Mover

{

private static final int jumpStrength = 16;

public void act()

{

checkKeys();

checkFall();

}

private void checkKeys()

{

if (Greenfoot.isKeyDown("left"))

{

setImage("pengu-left.png");

moveLeft();

}

if (Greenfoot.isKeyDown("right"))

{

setImage("pengu-right.png");

moveRight();

}

if (Greenfoot.isKeyDown("space"))

{

if (onGround())

jump();

}

}

private void jump()

{

setVSpeed(-jumpStrength);

fall();

}

Now lets use a variable in

the Pengu class for the

vertical speed when

jumping because this will

make it easier to find and

change later!

Lets call it jumpStrength

Don’t forget to also update

the jump method with the

new variable name!

Test out different

jumpStrengths by changing

the value.

Compile and run!

Running, falling, jumping!

Pengu should

now be able to

run, fall and

jump correctly!

Creating a moving platform

We need a way for

Pengu to get from

side to side

without falling!

We can create a

moving platform

that Pengu can

surf on like the

cloud!!

Moving Platforms!
import greenfoot.*; // (World, Actor, GreenfootImage, and Greenfoot)

/**

* A cloud that moves back and forth between two defined

points.

*/

public class Cloud extends Actor

{

private int speed = 4;

/**

* Move in the direction we are currently moving in.

Turn if we reach a turning point.

*/

public void act()

{

setLocation (getX() + speed, getY());

Actor actor = getOneIntersectingObject(null);

if(actor != null) {

actor.setLocation (actor.getX() + speed, actor.getY());

}

}

Open the Cloud class

Before we get the cloud

moving from point to point, we

need to make sure that when

Pengu jumps on the cloud, the

Cloud and Pengu move in the

same direction together.

Add this code to do this!

Moving Platforms!
public class Cloud extends Actor

{

private int speed = 4;

private int leftTurn = 270;

private int rightTurn = 480;

/**

* Move in the direction we are currently moving in. Turn if we reach a turning point.

*/

public void act()

{

setLocation (getX() + speed, getY());

Actor actor = getOneIntersectingObject(null);

if(actor != null) {

actor.setLocation (actor.getX() + speed, actor.getY());

}

if (atTurningPoint()) {

speed = -speed;

}

}

/**

* Test if we are at one of the turning points.

*/

public boolean atTurningPoint()

{

return (getX() <= leftTurn || getX() >= rightTurn);

}

}

Now we need the cloud to move back

and forth

To get the cloud to do this we need to

tell the cloud to change directions when

it gets to a specific point

To do this, first add the leftTurn and the

rightTurn variables. These variabes

specify the x coordinate at which the

cloud should change directions

Now create a boolean method that

decides if we’re at a turning point. The

method will return true as soon as we

reach either the left turning point or the

right turning point

Now write the code that tells the cloud

to change directions if it is at a turning

point. Using the negative of speed

reverses the movement

Compile and run!

24

Now Pengu

can surf the

cloud!

Ending the game after a fall!
public boolean onGround()

{

Object under = getOneObjectAtOffset(0, getImage().getHeight()/2-8 , null);

return under != null;

}

public void setVSpeed(int speed)

{

vSpeed = speed;

}

public void fall()

{

setLocation (getX(), getY() + vSpeed);

vSpeed = vSpeed + acceleration;

if (atBottom())

gameEnd();

}

private boolean atBottom()

{

return getY() >= getWorld().getHeight() - 2;

}

private void gameEnd()

{

Greenfoot.stop();

}

}

We want our game to be

over if our character falls

off and dies!

Open the Mover class

Create the method

atBottom. This will decide if

Pengu has fallen

Create the method

gameEnd. This stops

running Greenfoot

Call these methods in the

fall method

