
Chapter 5 – Abstraction

 Acknowledgement: Michael Kolling, Bruce Chittenden

Why do we need Classes?

• Encapsulation – Information Hiding

• Abstraction - A technique to solve a whole
class of problem rather than a specific one.

– A more formal Definition - a concept or idea not
associated with any specific instance.

Logical Operators

• Help us create more complex boolean
expressions

– And (&&)

• Conjunction –true only when both conjuncts are true.

– Or (||)

• Disjunction –false only when both disjuncts are false.

– Not (!)

• Negation –changes the truth value between false and
true.

Complex Boolean Expressions

• Combination of two or more boolean
expressions

• If (!isDown && Greenfoot.isKeyDown(“w”))

 {
 // Set of instructions to execute if the complex expression above
evaluates to true.

 }

An informal representation of above expression can be

If ((not isDown) and (the keyboard key “w” is down or pressed))

 execute the set of instructions

Exercise 5.1

Code to Create the World

Exercise 5.1

The Code is only Stubs

Exercise 5.2

5.1 Animating the Key

Specifies the size and
resolution of the World

Code 5.1

import greenfoot.*; // (World, Actor, GreenfootImage, and Greenfoot)

public class Key extends Actor
{
 /*
 * Create a new key.
 */
 public Key()
 {
 }

 /*
 * Do the action for this key.
 */
 public void act()
 {
 }
}

Code 5.2

public void act()
{
 if (Greenfoot.isKeyDown ("g"))
 {
 setImage ("white-key-down.png");
 }
 else
 {
 setImage ("white-key.png");
 }
}

Exercise 5.3

Code 5.3

public void act ()
{
 if (!isDown && Greenfoot.isKeyDown ("g"))
 {
 setImage ("white-key-down.png");
 isDown = true;
 }

 if (isDown && !Greenfoot.isKeyDown ("g"))
 {
 setImage ("white-key.png");
 isDown = false;
 }
}

Logical Operations AND and NOT

 if (!isDown && Greenfoot.isKeyDown ("g"))
 {
 setImage ("white-key-down.png");
 isDown = true;
 }

 if (isDown && !Greenfoot.isKeyDown ("g"))
 {
 setImage ("white-key.png");
 isDown = false;
 }

if (not isDown and “g” is down)

if (isDown and “g” is not down)

Exercise 5.4

5.2 Producing the Sound

The sounds folder has a collection of
sound files each of which contains the
sounds for a single piano key.

Code 5.4

/*
 * Play the note of this key.
 */
public void play()
{
 Greenfoot.playSound ("3a.wav");
}

Exercise 5.5

Exercise 5.6

Right Click on the Object
Click play

Exercise 5.7

Add play () to the Act Class

Exercise 5.7

Now the Key Plays a Note

Exercise 5.8
The Keys All React the Same Way

Code 5.5

public class Key extends Actor
{
 private boolean isDown;
 private String key;
 private String sound;

 /*
 * Create a new key linked to a given keyboard key, and
 * with a given sound.
 */
 public Key(String keyName, String soundFile)
 {
 key = keyName;
 sound = soundFile;
 }

 // methods omitted.
}

Exercise 5.9

Change the “g” to key

Change the “3a.wav” to sound

Exercise 5.10
Right Click Key
Select new Key

keyName is “g” and
soundFile is “3a.wav”

Exercise 5.10

Key Works as Before

sounds Folder

We Will Use Sound Files
3a.wav and 3b.wav

Exercise 5.10
Add the First Key

Exercise 5.10

Add the Second Key

Exercise 5.10

We now Have a Piano
with Two Keys

5.4 Building the Piano

addObject (new Key (“g”, “3a.wav”, 300, 180);

Remember that the expression

new Key (“g”, “3a.wav”)

creates a new Key object with a specific key and a
sound file.

Exercise 5.11

Call addObject to Create a Key

Exercise 5.11

Exercise 5.12

(0, 0)

Y

X

The Key is 280 x 63
Therefore the Center of the Key

Would be 140 x 31 ½

Exercise 5.12

import greenfoot.*; // (World, Actor, GreenfootImage, and Greenfoot)

/*
 * A piano that can be played with the computer keyboard.
 *
 * @author: M. Kolling
 * @version: 0.1
 */
public class Piano extends World
{
 /*
 * Make the piano.
 */
 public Piano()
 {
 super(800, 380, 1);

 addObject (new Key ("g", "3a.wav"), 300, 140);
 }
}

Exercise 5.13

31 ½ +31 ½ = 63
The First Key is Located at 300

Therefore 300 – 63 = 237
Locate the Second Key at 237

Exercise 5.13

import greenfoot.*; // (World, Actor, GreenfootImage, and Greenfoot)

/*
 * A piano that can be played with the computer keyboard.
 *
 * @author: M. Kolling
 * @version: 0.1
 */
public class Piano extends World
{
 /**
 * Make the piano.
 */
 public Piano()
 {
 super(800, 380, 1);

 addObject (new Key ("g", "3a.wav"), 300, 140);
 addObject (new Key ("f", "3g.wav"), 237, 140);
 }
}

Exercise 5.14

public class Piano extends World
{
 /*
 * Make the piano.
 */
 public Piano()
 {
 super(800, 380, 1);
 makeKeys ();
 }

 /*
 * Create the Piano Keys.
 */
 public void makeKeys()
 {
 addObject (new Key ("g", "3a.wav"), 300, 140);
 addObject (new Key ("f", "3g.wav"), 237, 140);
 }
}

Loops

• Repetition in programs allows us to repeat
something over and over.

• We achieve repetition through loops.

• A loop is a statement in programming
languages that can execute a section of code
multiple times.

• We will look at a while loop to help us repeat.

While-loop

• This will keep looping until the condition
indicated on the loop is false.

 while (/*booleanExpression*/)

 {

 //code that should be repeated

 }

While-Loop

• In order to help us keep track of how many
times we are looping, we need to create a
variable to store a count.

• Inside the loop, we also must remember to
increment the count so that the loop executes
the correct number of times.

While loop

 while (true)

 {

 //code that should be repeated

 }

• This loop will continue forever because true is
always true.

5.5 Loops: The While Loop

while (condition)
{
 statement;
 statement;
 . . .
}

While Loop

 int count = 0;

 while (count < 10)

 {

 //code that should be repeated

 count = count + 1;

 }

 The code in this loop will execute 10 times

Local Variables

int i = 0;

while (i < 100)
{
 statement;
 statement;
 . . .
 i = i + 1;
}

Local Variable

 A local variable is declared inside a
method body, not at the beginning of
the class
 It has no visibility modifier (private
or public) in front of it
 It exists only until the current
method finishes running, then it will
be erased

for Loop Better Than while

int i = 0;
while (i < 100)
{
 statement;
 statement;
 . . .
 i = i + 1;
}

int i;
for (i=0; i < 100; i++)
{
 statement;
 statement;
 . . .
}

Exercise 5.15

/*
 * Create the Piano Keys
 */
public void makeKeys()
{
 int i;

 for (i=0; i<12; i++)
 addObject (new Key ("g", "3a.wav"), 300, 140);
}

Exercise 5.15

It Appears That There is Only One
But The Keys Are Stacked Upon

One Another

Exercise 5.15

Exercise 5.16

/*
 * Create the Piano Keys
 */
Public void makeKeys()
{
 int i;

 for (i=0; i<12; i++)
 addObject (new Key ("g", "3a.wav"), i*63, 140);
}

Exercise 5.16

Key Width is 63 * 12 Keys = 756
World Width is 800 – 756 = 44

Half the Space on Either Side 44 / 2 = 22
Space at Edge 22 + Half a Key Width31 ½ = 53 ½

Exercise 5.17

 for (i=0; i<12; i++)
 addObject (new Key ("g", "3a.wav"), i*63 + 54, 140);

The for Loop Will Execute 12 Times
The Values for i Will Be 0, 1, . . ., 11

Exercise 5.17

/*
 * Create the Piano Keys
 */
public void makeKeys()
{
 int i;

 for (i=0; i<12; i++)
 addObject (new Key ("g", "3a.wav"), i*63 + 54, 140);
}

Exercise 5.17

Exercise 5.18
/*
 * Create the Piano Keys
 */
public void makeKeys()
{
 int i;
 int keyWidth;
 int keyHeight;
 int spaceAtEdge;

 Key key = new Key(" ", " ");
 keyWidth = key.getImage().getWidth();
 keyHeight = key.getImage().getHeight();
 spaceAtEdge = (800 - keyWidth*12) / 2;

 for (i=0; i<12; i++)
 addObject (new Key ("g", "3a.wav"), keyWidth*i + spaceAtEdge + keyWidth/2, keyHeight / 2);

}

Exercise 5.18

5.6 Using Arrays

“a” “b” “c” “d” “e” “l” “k” “j” “i” “h” “g” “f”

 String []

 0 1 2 3 4 5 6 7 8 9 10 11

String [] names;
names = {“a”, “b”, “c”, “d”, “e”, “f”, “g”, “h”, “i”, “j”, “k”, “l” };

String [] names

names [3] contains the string “d”

Code 5.6

public class Piano extends World
{
 private String[] whiteKeys =
 { "a", "s", "d", "f", "g", "h", "j", "k", "l", ";", "'", "\\" };
 private String[] whiteNotes =
 { "3c", "3d", "3e", "3f", "3g", "3a", "3b", "4c", "4d", "4e", "4f", "4g“ };

 // constructor and methods omitted
}

Code 5.7

/*
 * Create the Piano Keys
 */
public void makeKeys()
{
 int i;

 for (i=0; i < whiteKeys.length; i++)
 {
 Key key = new Key (whiteKeys[i], whiteNotes[i] + ".wav");
 addObject (key, 54 + i*63, 140);
 }
}

We moved the creation of a new
key out of the addObject method

Use a plus symbol (+) to concatenate
whiteNotes[i] with “.wav”

Exercise 5.19

Exercise 5.19

Exercise 5.20

One Octave Lower
Sound Files Begin with 2

Use Sound File 2c
Instead of 3C

Exercise 5.20

Change the Strings in the
whiteNotes Array to be
One Octave Lower

Exercise 5.22

public Key (String keyName, String soundFile)
{
 key = keyName;
 sound = soundFile;
}

Exercise 5.22

public Key (String keyName, String soundFile, String img1, String img2)
{
 key = keyName;
 sound = soundFile;
 upImage = img1;
 downImage = img2;
 setImage (upImage);
 isDown = false;
}

Change the Key Class so
That It Can Make Either
White or Black Keys

Exercise 5.22
public void makeKeys()
{
 int i;
 Key key;

 /*
 * Make the White Keys
 */
 for (i=0; i< whiteKeys.length; i++)
 {
 key = new Key (whiteKeys[i], whiteNotes[i] + ".wav", "white-key.png", "white-key-down.png");
 addObject (key, 54 + i*63, 140);
 }

 /*
 * Make the Black Keys
 */
 key = new Key(blackKeys[0], blackNotes[0]+".wav", "black-key.png", "black-key-down.png");
 addObject(key, 85 + (0*63), 86);
 key = new Key(blackKeys[1], blackNotes[1]+".wav", "black-key.png", "black-key-down.png");
 addObject(key, 85 + (1*63), 86);
}

Exercise 5.22

Exercise 5.23

 /*
 * Make the Black Keys
 */
 i = getValidIndex ();
 key = new Key(blackKeys[i], blackNotes[i]+".wav", "black-key.png", "black-key-down.png");
 addObject(key, 85 + (i*63), 86);
 i = getValidIndex ();
 key = new Key(blackKeys[i], blackNotes[i]+".wav", "black-key.png", "black-key-down.png");
 addObject(key, 85 + (i*63), 86);
 }

 public int getValidIndex ()
 {
 int i;

 i = Greenfoot.getRandomNumber (12);
 while (blackKeys[i].equals(""))
 i = Greenfoot.getRandomNumber (12);
 return (i);
 }

Add Two Black Keys

Exercise 5.23

Exercise 5.24

 private String[] whiteKeys =
 { "A", "S", "D", "F", "G", "H", "J", "K", "L", ";", "'", "\\" };
 private String[] whiteNotes =
 { "3c", "3d", "3e", "3f", "3g", "3a", "3b", "4c", "4d", "4e", "4f", "4g" };

 private String[] blackKeys =
 { "W", "E", "", "T", "Y", "U", "", "O", "P", "", "]" };
 private String[] blackNotes =
 { "3c#", "3d#", "", "3f#", "3g#", "3a#", "", "4c#", "4d#", "", "4f#" };

Exercise 5.25
public void makeKeys()
{
 int i;
 Key key;

 /*
 * Make the White Keys
 */
 for (i=0; i< whiteKeys.length; i++)
 {
 key = new Key (whiteKeys[i], whiteNotes[i] + ".wav", "white-key.png", "white-key-down.png");
 addObject (key, 54 + i*63, 140);
 }

 /*
 * Make the Black Keys
 */
 for(i = 0; i < whiteKeys.length-1; i++)
 {
 if(! blackKeys[i].equals(""))
 {
 key = new Key(blackKeys[i], blackNotes[i]+".wav", "black-key.png", "black-key-down.png");
 addObject(key, 85 + (i*63), 86);
 }
 }
}

Add Another Loop to
Create the Black Keys
This Code Must Handle the
Gaps That Exist with the
Black Keys

Exercise 5.25

Exercise 5.26

/*
 * Display a message
 */
public void showMessage()
{
 GreenfootImage bg = getBackground();
 bg.setColor (Color.WHITE);
 bg.drawString ("Click Run and then use your keyboard to play", 25, 320);
}

get and set Background

get and set Color

drawString

java.awt.Color

A Color object represents a color. Color class provides static fields that return a specific

Color object: BLACK, BLUE, GREEN, RED, CYAN, ORANGE, YELLOW.

For example, to obtain a Color object that represents green, use this code:

Color color = Color.GREEN;

Create a custom color by passing red-green-blue (RGB) values to the Color class's

constructor:

Color myColor = new Color (246, 27, 27);

To change a component's color, call the setForeGround and setBackGround methods of

the component.

component.setForeGround (Color.YELLOW);

component.setBackGround (Color.RED);

Abstract Window Toolkit (AWT)

The Abstract Window Toolkit (AWT) is Java's
original platform-dependent windowing,
graphics, and user-interface widget toolkit.
The AWT is now part of the Java Foundation
Classes (JFC) — the standard API for providing
a graphical user interface (GUI) for a Java
program.

http://en.wikipedia.org/wiki/Java_(programming_language)
http://en.wikipedia.org/wiki/Windowing_system
http://en.wikipedia.org/wiki/Graphic
http://en.wikipedia.org/wiki/User-interface
http://en.wikipedia.org/wiki/User-interface
http://en.wikipedia.org/wiki/User-interface
http://en.wikipedia.org/wiki/Widget_toolkit
http://en.wikipedia.org/wiki/Java_Foundation_Classes
http://en.wikipedia.org/wiki/Java_Foundation_Classes
http://en.wikipedia.org/wiki/Application_programming_interface
http://en.wikipedia.org/wiki/Graphical_user_interface

AWT Architecture

The AWT provides two levels of APIs:

• A general interface between Java and the native system, used for
windowing, events, layout managers. This API is at the core of Java GUI
programming and is also used by Swing and Java 2D. It contains:

– The interface between the native windowing system and the Java
application;

– The core of the GUI event subsystem;

– Several layout managers;

– The interface to input devices such as mouse and keyboard; and

– A java.awt.datatransfer package for use with the Clipboard and Drag
and Drop.

• A basic set of GUI widgets such as buttons, text boxes, and menus. It also
provides the AWT Native Interface, which enables rendering libraries
compiled to native code to draw directly to an AWT Canvas object drawing
surface.

http://en.wikipedia.org/wiki/Application_programming_interface
http://en.wikipedia.org/wiki/Windowing_system
http://en.wikipedia.org/wiki/Event-driven_programming
http://en.wikipedia.org/wiki/Layout_manager
http://en.wikipedia.org/wiki/Graphical_user_interface
http://en.wikipedia.org/wiki/Swing_(Java)
http://en.wikipedia.org/wiki/Java_2D
http://en.wikipedia.org/wiki/Event-driven_programming
http://en.wikipedia.org/wiki/Layout_manager
http://en.wikipedia.org/wiki/Input_device
http://en.wikipedia.org/wiki/Mouse_(computing)
http://en.wikipedia.org/wiki/Keyboard_(computing)
http://java.sun.com/javase/6/docs/api/java/awt/datatransfer/package-summary.html
http://en.wikipedia.org/wiki/Java_package
http://en.wikipedia.org/wiki/Clipboard_(software)
http://en.wikipedia.org/wiki/Drag_and_drop
http://en.wikipedia.org/wiki/Drag_and_drop
http://en.wikipedia.org/wiki/Java_AWT_Native_Interface
http://en.wikipedia.org/wiki/Rendering_(computer_graphics)
http://en.wikipedia.org/wiki/Library_(computer_science)
http://en.wikipedia.org/wiki/Native_code
http://java.sun.com/javase/6/docs/api/java/awt/Canvas.html
http://en.wikipedia.org/wiki/Object_(computer_science)

Exercise 5.26

5.26 Summary of Programming Techniques

In this chapter, we have seen two very fundamental and
important concepts for more sophisticated programming:
loops and arrays.

Loops allow us to write code that executes a sequence of
statements many times over.

The other major new concept we used was an array. An
array can provide many variables (all of the same type)
in one single object.

Concept Summary

